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Abstract. The octahedral Jahn-Teller system E 0 E is studied using generalised Glauber 
states which are strong-coupling eigenstates of the system. It is shown that these Glauber 
states become, under certain conditions, equivalent to the weak-coupling eigenstates obtain- 
able from standard perturbation theory. Eigenstates are thus obtained for the system which 
can be applied using perturbative procedures over the complete range of coupling strengths. 
Expressions which are functions of the coupling strength are obtained for the energies, 
the ground state Ham factor p and the A+ E absorption intensities. The results compare 
well with the available numerical calculations. 

1. Introduction 

The octahedral Jahn-Teller system E 0 E ,  in which a doubly degenerate electronic 
state E is coupled to a vibrational mode E, has received much attention over the years. 
The steady interest in this system is rooted in the fact that it is probably the simplest 
system that exhibits an infinite spatial degeneracy: the static problem possesses an 
infinity of solutions. The first detailed analysis was performed by Longuet-Higgins et 
a1 (1958), who handled the dynamical problem by diagonalising an infinite tridiagonal 
matrix using numerical methods. Analyses for limited ranges of the energy or coupling 
strength have been performed by O'Brien (1976) and O'Brien and Pooler (1979), and 
isolated exact solutions have been found by Judd (1979) and further discussed by Reik 
et a1 (1982). An observation by Judd (1977) has recently been extended by Barentzen 
et a1 (1981) to provide an approximate analytical solution suitable at all coupling 
strengths. 

In spite of this recent work, an approximate analytical solution based on explicitly 
defined wavefunctions has yet to be developed. This paper attempts, in part, such a 
development using the generalised Glauber states first introduced by Judd (1974) and 
Judd and Vogel (1975) in connection with the strong-coupling problem. 

2. Hamiltonian 

In terms of a characteristic frequency w and a coupling strength K ,  the Hamiltonian 
can be written in second quantisation as H = Ho + H ,  where 

H o = + h w ( a ' . a + a . a t )  H ,  = K h ~ ( f + f ) ' ~ '  * (U '  + U ) .  ( 1 )  
In these equations, a' represents the two boson operators a: and a', that create phonons 
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which transform like the r3 (i.e., the E )  representation of the octahedral group 0, the 
f' likewise creates the two states of the electronic doublet. Ho accounts for the 
oscillatory motion of the ligands while H I  describes a linear interaction between the 
E electronic state and the E vibrational mode of the ligands. The scalar products in 
(1 )  refer to 0. Our coupling parameter K is related to the k of Barentzen et al (1981), 
and the L and E,, of Englman (1972) and Ham (1972), respectively, by the equations 

K = (EJT/fio)"2 = J 1 / 2 k  = J?/sL/hw.  (2) 

3. Eigenfunctions 

The coherent states discussed by Glauber (1963) in connection with the radiation field 
have been generalised by Judd and Vogel (1975) who thereby obtained eigenfunctions 
suitable in the strong JT limit. Equation (27) of their paper expresses these generalised 
states as 

~ p n v )  = Jo2' lp) e'"+ exp(Kb')(b'- K ) " I O )  d+  (3) 

where p refers to the lower branch ( p  = I )  or to the upper branch ( p  = U), for which 

I l ) = c o s f ~ 1 8 ) - s i n t ~ l ~ ) ,  Iu)=sin~+I8)+cost+IE).  

The two electronic states designated 18) and \ E )  span E, and the creation operator bt 
is defined 

b t = a t , c o s 4 + a r s i n + .  

We shall, for the most part, be concerned with the states of the lower branch. 

n takes on the values 0, 1 ,2 , .  . . . The operator U,, discussed by Judd (1976), 
At the strong-coupling limit ( K  +m), we have HlInv)- ,  f i w ( n + i - K 2 ) l I n v ) ,  where 

commutes with H and acts on J lnv )  to give the eigenvalues v = if, *;, . . . , where v 
always occurs with - v  owing to time-reversal symmetry. 

A useful simplification of the states Ipnv) results when we expand the exponential 
and binomial terms of (3) in powers of K :  

where IpNv), designates the state IpNv) with K = 0, and one sum has been rewritten 
as a generalised Laguerre polynomial. It is easily demonstrated that IpNv), is an 
eigenstate of the zero-coupling Hamiltonian Ho. 

Rather than expand Ipnv) in terms of the zero-coupling eigenstates, as in (4), we 
can alternatively expand and group explicitly by powers of K : 
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This expression shall prove useful when we consider the Glauber states in the region 
of weak coupling. 

We shall limit our analysis to those states for which v is f. These are the only ones 
accessible by electric-dipole radiation from the zero-phonon ground state. 

4. Orthogonality 

It is no surprise that our states are orthogonal in the strong-coupling limit; that they 
remain orthogonal for zero coupling and nearly so for intermediate couplings is 
remarkable. The orthogonality for zero coupling is easily demonstrated. With K equal 
to zero, IPnf) (as described by (3)) reduces to a vector which lies in that invariant 
subspace of the 2~ oscillator Hamiltonian Ho which is uniquely labelled by the energy 
quantum number n. The states Ipnf) ,  and Ipn'f),, thus lie in different subspaces and 
are necessarily orthogonal. 

To find the overlap between intermediate-coupling states, we must take account of 
p as a label. We begin with the overlap of states of the lower branch. Applying (4), 

in which our zero-coupling result has been used. The overlap ,( INfJINf), is evaluated 
in appendix 1 and this allows us to write 

where 

N even 

Y N  = I(?)! (y)!, N odd. 
(7) 

The near-orthogonality of these states is seen when we replace 2NyN with N!-a rather 
accurate approximation within ( 6 ) .  The sum in ( 6 )  is now cast in a form for which a 
closed expression has been reported by Chancey and Judd (1983) in connection with 
the orthogonality of the states of the linear octahedral JT system T, 0 ( E  + T ~ ) .  Using 
their equation (AI), we now have 

(1n' f l1nf)=2.rr~n!  e K 2 S ( n ' ,  n). (8) 

A related procedure gives an identical result for (un'flunf). An expression for the 
interbranch overlap can be obtained using similar methods but will be reserved until 
later in our analysis. The first-order perturbation calculation for the energies of the 
lower branch will require only the lower branch overlap. Expression (8) gives us 
confidence to expect that our states will provide reasonably accurate energies when 
the analysis is limited to first-order perturbation theory. 
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5. Weak coupling 

Perhaps the most remarkable result of our analysis is the accuracy of the generalised 
Glauber states (3) in the region of weak coupling. This is all the more surprising when 
we reflect that our states were originally constructed for use in the strong-coupling 
limit (see Judd and Vogel 1975). To show this accuracy, we shall first construct, as a 
power series in K ,  a weak-coupling eigenfunction of H by treating Ho as the unperturbed 
Hamiltonian with eigenstates I hi),. We begin by temporarily simplifying our notation: 
we contract IZnt), to In). 

Let 14); and IC$)!, be the zeroth- and first-order perturbative eigenfunctions of H, 

where the perturbing Hamiltonian HI equals ( K h w  ) V, and we have ignored the factor 
{ (n \n ) } - I" .  The standard literature (see, for example, Messiah 1959) provides 
expressions for the higher-order perturbative states by way of the recursion relation 

Multiplying through by (n,l V we have 

Repeatedly applying ( 1 1 )  to reduce the bracketed expression in (lo),  we gain the relation 

(12) 

This expression simplifies dramatically in the limit as n approaches infinity, and we 
momentarily restrict our analysis accordingly. 

Using appendix 1, the non-zero matrix elements of V appearing in ( 12) become, 
in this limit, 

( n  + m + 11 Vln + m ) / ( n  + m + lln + m + 1) = -1, (13) 

(n+m-l IVln+m)/ (n  + m - l J n + m - l ) =  -n, (14) 

for m < s +2<< n. We can easily see that ranges over the states In +s + l), 
In +s- l), . . . ,In -s +l ) ,  I n - s -  1). Now suppose that of the s + 1  matrix elements in 
one term of (12), a number r of them contribute factors (-1) by (13) and a number t 
produce factors (-n) by (14). Given this, the matrix elements multiply to form (- l)'+'n' 
with the associated state equal to In + r - t ) ,  that is, In +2r  - (s + 1)). The ( n i  - 
nj)-type divisors multiply to produce a factor (-l)r. Thus this term in (12) becomes 

(15) (-l)s+l-r s + l - r  n In+2r- (s+l ) ) .  

The (s + 1 )  summations produce a total of (rTr), that is, ( ' T I )  terms identical to (15). 
Remembering that r + t = s + 1, we are thus led to express (12) as 
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this is accurate when ( s / n )  is near zero. Since 14): = In) = Iln$,, we have 

Id):= f ( - 1 I q K P  ( ) nqll ,  n + p - 2 4 ,  ;),, s<< n. (16) 
p = o  q = o  P - 4  

The accuracy of our Glauber states in the weak-coupling region is demonstrated when 
we now use ( 5 )  to write lln;) (in the limit of large n):  

where (:) has reduced to n q / q !  in this limit. Requiring that the normalisation of Ilni) 
equals that of the perturbative eigenstate we gain agreement between terms through 
K ' .  The Glauber states thus effectively imitate the accurate perturbative states and we 
may conclude that the K s  term in I lnf)  will be accurate for s G n. We should therefore 
expect our first-order calculations to show greater accuracy at larger powers of K with 
increasing energies. 

6. Energies 

We are now prepared to calculate the approximate energies. Using standard techniques, 
a first approximation for the energy level of the lower branch labelled by (n,  v = f )  is 
given by 

En; = (/nil HI In;)/ (In41 In;). (17) 

To evaluate the numerator, we need the matrix elements (InflHoIIn;) and (lnflH,lIn$). 
Using (4) to find the first of these, we have 

where IlNf), is an eigenstate of Ho with eigenvalue ( N +  1)hw. Thus, 

where the orthogonality of the zero-coupling states has been used, and yN is defined 
in (7 ) .  For ( l n $  HI I In;), we must evaluate o( IM$l HI 1 IN;),. To this end, note that 

,( [Mil HI I IN;), = - Khw [ MO( 1, M - 1, $ 1  IN;), + No( lM$I I ,  N - 1, f),] 

= - K h w [ ( N + I ) G ( M ,  N+I) , ( IN;~lN;) ,  

+ N6( M,  N - 1),( I ,  N - 1, ;I I ,  N - 1, f ) O ]  

and thus, 

The procedure for reducing this expression is straightforward and is outlined in 
appendix 2 .  The result is 

( 2 0 )  (lnf(H,lln;)/hw = ( n  + 1 - 2 s ) ~  +Sq(d/dS)( ln  77) - ( l n f ~ H o ~ l n ~ ) ,  
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where S =  K 2  and the normalisation 7 = ( l n $ l / n f )  is available using ( 6 ) .  A compact 
expression for the energies En, ,2  is the final result, 

E n , , 2 / h ~  = n +1-2S+S(d/dS)  ln(lnilln$). (21) 

Figure 1 plots these energies and compares them with the numerical calculations of 
Longuet-Higgins et a1 (1958). The oscillations of the analytical and numerical solutions 
agree remarkably well, especially with increasing n. This is a consequence of the 
condition which requires that r<< n if the K2' term in Ihf) is to be accurate. 

Figure 1. Exact and approximate energy levels for Y = f. The full curves show the results 
of the approximate calculation; the broken curves show the exact (numerical) solutions 
of Longuet-Higgins et al (1958). The chain line shows the lowest displaced oscillator level 
and is included for comparison. Both sets of curves are plotted against k2,  where k is the 
coupling constant of Barentzen et a/ (1981): k = hK. 

Though not shown in figure 1, except for the lowest levels, the strong-coupling 
region is quite accurately represented. This is not unexpected given the origin of our 
states. 

7. Ham factors 

Matrix elements of electronic operators are reduced in magnitude when the eigenstates 
involve the coupling of electronic states to phonon states (Ham 1968). Of particular 
interest as a test of the eigenstates is the matrix element p ,  defined in terms of the 
Glauber states as 

P = e( IniIAzI / e( In+),, (22) 
where the subscripts label those components of Ilnf) which transform like 10) and Is) 
under operations of the octahedral group 0. The electronic operator is labelled by 
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the irrep A2 of 0. We shall limit our analysis to the most important case: the vibronic 
ground state doublet, n = 0. 

The component states can be related to the ground state by the equations 

Because the imaginary and.rea1 parts of IP@) depend only on the factor exp(iv+/2) in 
(3), (22)-(24) allow us to write 

p = f( Im( I@[ U&))/ 8( l@l (25) 

For the overlap in the numerator, we find 

L~(K2)L~(K2)o(lNfluMf)o 

From appendix 1, 

o( INfl u M f ) ,  = ( - 1 ) N 2 . r r 2 i ~  ! N !S ( M, N)/2NyN, 

and thus 

= . rr2(Z0(K2)-II(K2)) ,  (26) 

where the sums have been written as modified Bessel functions. A similar process 
results in 

e(I&lI@)o = T ' ( I ~ ( K ' )  + I ~ ( K ~ ) ) .  (27) 

p = [ ~ o ~ ~ 2 ~ - ~ l ~ ~ 2 ~ 1 / ~ ~ o ~ ~ 2 ~ +  Il(K2)1 (28) 

Thus for the ground state, p takes the simple form 

and is plotted in figure 2. It can be seen that the agreement with the curve obtainable 
from the numerical calculations of Child and Longuet-Higgins (1961) is very good. 

In the strong-coupling limit, the leading term of (28) is (2K2)-' rather than the 
( 16K4)-' calculated by O'Brien and Pooler (1979). Vogel (1975) has shown that the 
Glauber states produce the correct ( 16K4)-' term when the perturbation calculation 
is carried to second order. 
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0 2 4 6 8 1 0  
k 2  

Figure 2. Exact (numerical) and approximate values of the Ham factor p for the ground 
state ( n  = 0, v =:). The full line shows the Glauber-state approximation; the broken shows 
the exact value. Both are plotted as functions of k2, where k2 = 2 K 2 .  

8. Absorption intensities 

Since the work by Longuet-Higgins et al (1958), the calculation of the double-peaked 
absorption spectrum has been a standard test. Assuming the Condon approximation- 
standard for this problem-the A + E line intensities are proportional to the square 
of the overlap between the zero-coupling phonon state and the Glauber states. We 
shall calculate this overlap to second order so as to provide a good comparison with 
the calculations of Barentzen et a1 (1981). 

The overlap to be calculated is 

where the sum involves both branches and the prime indicates that N = n is omitted 
for P = 1. Our previous experience and the approximation 2NyN = N !  allow us to easily 
calculate the first-order term: 

(- 1 ) " ~ " / ( n  !eK2)1'2. 

Within a phase, this term is identical to the analogous term calculated by Barentzen 
et a1 (1981). The second-order term, involving the lower branch, when evaluated in 
a similar manner produces 

K 2  1/2 (-l)"+l(nK" - K " + 2  )/(n!e ) * 

The final term of (29), the sum involving the upper branch, is not amenable to the 
simple approximation used in the first two terms. A straightforward, though exacting, 
calculation can be carried out using (3)  and (4) along with appendix 1. The final result 
for (29), when squared, gives a theoretical zero-temperature absorption intensity. The 
resultant spectra for four coupling strengths are shown in figure 3.  The agreement 
with the analogous spectra calculated numerically by Longuet-Higgins et a1 (1958) is 
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I€-E,, )/nu 

Figure 3. Exact and approximate A -f E absorption intensities for four coupling strengths: 
(a )  k 2 = S ; ( b )  k 2 =  lO;(c)  k 2 =  1 5 ; ( d )  k 2 = 2 0 .  Thebrokenlinesarefromexact(numerica1) 
solutions; the full lines from Glauber-state approximation. The broken lines are offset 
from the full ones for clarity. 

remarkably good considering our approximations. The origin of the Glauber states is 
again underscored by the improving accuracy with increasing coupling strength. 

9. Conclusion 

The success of our analysis-in particular the remarkable behaviour of the Glauber 
states under weak-coupling conditions-leads us briefly to consider the special case 
we have dealt with, As strong-coupling states, the Glauber states embody only one 
degree of oscillatory freedom. This has recently been given a semi-classical interpreta- 
tion in the work of Judd (1984). In restricting our analysis to those states for which 
v = i, we have dealt only with those systems whose weak-coupling behaviour is charac- 
terised by a single active oscillatory mode out of the two possible. This is borne out 
when we recall that the occupation numbers for the two oscillatory modes at zero- 
coupling are simply n and v-;. The Glauber states, as defined in (3), do not lend 
themselves to the cases v = i, :, . , . , with any accuracy when applied outside the 
strong-coupling region. Even so, the success of the Glauber states is more than justified 
in the excellent results shown in figures 1, 2 and 3. 

An extension of these methods to other systems offers a possibility for future study. 
In particular, for the system T @ ( T  + E ~ ) ,  Judd and Vogel (1975) have defined Glauber 
states analogous to (3). Such an application, if successful, would complement the 
recent analytical approximation of Chancey and Judd ( 1983). 
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Appendix 1. Zero-coupling Glauber state overiaps 

Using (3), o(In'hlZni)o can be written as 

lo2= lo2= exp[i(4-4') /2] cos(~ ' /2 -4 /2) (0( (b ' ) " ' (b t )"~0)  d 4  d4' ,  (Al . l )  

where b' a, cos 4' + ah sin 4'. 
Expressing (b ' )  "'( b')" in normal form, we have 

(b')" '(  b')" = E  [COS( 4'- 4)3"n'!n!(bt)"-"( b')" '-"/[(  n'- u)!u!(  n - U)!]. 
U 

The matrix element in (Al . l )  now has a factor (O~(~t )n-"(b ' )" ' -"~O) ,  which is zero 
unless U = n'= n. Thus (Al . l )  becomes 

S(n', n)n! lo2= Io2= exp i( 4 - 4')/2 cos(4'/2 - 4 / 2 )  [cos( 4' - +)I" d 4  d4 ' .  

We will first perform the integration over 4', keeping 4 constant. Let @ = 4 ' -  4 so 
that d@ = d+'. Thus, 

o(In';/In;),= S(n', n)n! lo2= d 4  exp(-i@/2) C O S ( @ / ~ ) ( C O S  0)" d o .  (A1.2) 

Using Leibnitz's rule for the derivative of an integral (see, for example, Hildebrand 
1976), we discover that 

exp(-i@/2) COS(@/~)(COS a)" d@ = 0. $ If," 
We are thus free to set the value of 4. Let 4 = .rr, so that 

o ( I ~ ' f / I n ~ ) , = 2 d ( n ' ,  n)n! cos2(@/2)(cos @)" d@ I_: 
= 2 d ( n ' ,  n)n! ([:(cos@)" d Q + [ ~ ( c o s @ ) " + ' d @ ) .  

Formula (3.631.17) of Gradshteyn and Ryzhik (1980) allows us to evaluate these 
integrals, with the result that 

n even 

(A1.3) 

Beginning with (Al . l )  an identical development occurs for . (un'~(unf) , .  A nearly 
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identical development occurs for , (un ' f l ln~) , ,  with sin( 4'/2 - 4 /2 )  replacing cos( 4 ' /2  - 
4 / 2 )  in (A1.1). The result is 

-i( - 1)"27r2n !n !a( n', n) 
2"Y" 

,( un'fl m;>, = (A1.4) 

Matrix elements of the type (Al.3) are required in evaluating ,( ln'fl VI lni) , .  As defined 
in ( l ) ,  V = H , /  Khw, the action of V on oscillator states is well known, so that 

o(In'fIVllnf),= n',(l, n'- l ,~~lnf),-n,(ln 'f~I,  n - l , f )o .  (A1.5) 

Appendix 2. Manipulations involving the energy expression 

The recurrence and differentiation formulae for Laguerre polynomials (see, for 
example, Magnus et a1 1966), 

L,N+'-"(z) = L,N-"(z) +L,N_:'-"(z) (A2.la) 

d 
dz 
- L,N-"(z) = -L,N>l-"(z) 

allow us to rewrite (19) as 

L , N - ~ ( K ~ ) .  
O0 ( ~ I ! ) ~ ( K ' ) ~ - "  

L,N-"( K2)  - 
d(K2)  

- 2K 2( lnfllnf) +47r2K 
N=O 2NyN 

(A2.lb) 

(A2.2) 

Noting that 

we can further apply (A2.1b) to show that 

L ,  - (z)L,N-"(z)]-(N- ~)Z" -" - ' [L ,N-" (Z )L ,N-~(Z) ] .  (A2.3) 
=- [ZN-n  d N n 

dz 

The definition of (lnfllnf), combined with (A2.3), is all that we require to express 
(A2.2) as 

ln(Inf1lnf) - (ZnflHo/lnf), 
d ( n  + 1  - 2 K 2 ) ( I n f l l n f ) + K 2 ( l n f 1 1 n f ) -  

d(K2)  
which is (20). 
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